NME6003H GaN TRANSISTOR

Gallium Nitride 28V 25W, RF Power Transistor

Description

The NME6003H is a 25W, unmatched GaN HEMT, designed for multiple applications with frequencies up to 6GHz.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

•Typical performance (on Innogration fixture with device soldered)

V_{DD}=28V, I_{DQ}=150mA, CW,

Frequency(MHz)	Gp (dB)	P _{1dB} (W)	Efficiency (%)
2000	19	25	70

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings (Not simultaneous, TC = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	150	Vdc
GateSource Voltage	V _{gs}	-10,+2	Vdc
Operating Voltage	V _{dd}	40	Vdc
Maximum Forward Gate Current	Igmax	6	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature(See note 1)	TJ	+200	°C
Total Device Power Dissipation (Derated above 25°C, see note 2)	Pdiss	43	W

1. Continuous operation at maximum junction temperature will affect MTTF

2. Bias Conditions should also satisfy the following expression: Pdiss < (Tj – Tc) / RJC and Tc = Tcase

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc-dc	16	C/W
T_c = 85°C, T_J =200°C, DC Power Dissipation(See note 1)	Kejc-DC	4.6	

1. ReJC-DC is tested at only DC condition, it is related to the highest thermal resistance value among all test conditions. It might be differently lower in different RF operation conditions like CW signal ,pulsed RF signal etc.

NME6003H GaN TRANSISTOR

Table 3. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =10mA	V _{DSS}	150			V
Gate Threshold Voltage	V _{DS} = 28V, I _D = 5 mA V _{GS} (th) -2.7			V		
Gate Quiescent Voltage	V _{DS} =28V, I _{DS} =150mA, Measured in Functional Test	V _{GS(Q)}		-2.44		V
Functional Tests (In Innogration broadband Test Fixture, 50 ohm system) :V _{DD} = 28 Vdc, I _{DQ} = 150 mA, f = 2000 MHz, CW						

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain@P1dB	Gp		19		dB
Drain Efficiency@P1dB	Eff		70		%
1dB Compressed point	P1dB		25		W
Input Return Loss	IRL		-7		dB
Mismatch stress at all phases(No device damage)	VSWR		10:1		Ψ

NME6003H GaN TRANSISTOR

Package Outline

Flanged ceramic package; 2 leads

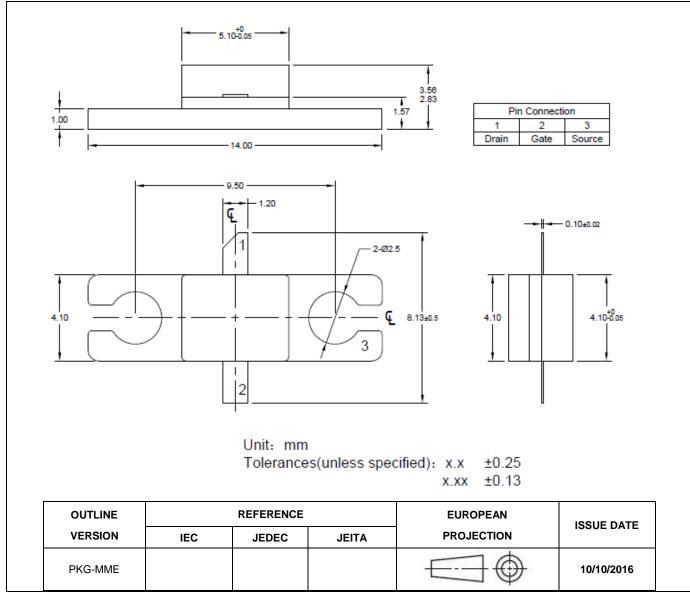


Figure 1. Package Outline PKG-MME

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2017/4/25	V1.0	Objective Datasheet Creation
2017/6/19	V1.0	Preliminary datasheet creation

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.